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The influence of dissipation on the simplified Fermi-Ulam accelerator model (SFUM) is investigated. The
model is described in terms of a two-dimensional nonlinear mapping obtained from differential equations. It is
shown that a dissipative SFUM possesses regions of phase space characterized by the property of area

preservation.
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I. INTRODUCTION

Following Enrico Fermi’s seminal paper [1], the one-
dimensional Fermi accelerator model has been studied over
many years, using a range of different approaches. The
model was originally introduced as a possible mechanism by
which cosmic rays can acquire their enormous energies. It
involves acceleration of charged particles through their inter-
action with periodically varying magnetic fields. Fermi’s
model was subsequently modified in order to take into ac-
count many other physical situations. One variant is the well-
known Fermi-Ulam accelerator model [2-4] (FUM). It con-
sists of a classical particle confined between two rigid walls,
one fixed and the other moving in time, in the absence of
external fields. For periodic motion of the moving wall, the
main results can be summarized as: (i) at low energy, the
phase space presents a chaotic sea that (ii) surrounds
Kolmogorov-Arnol’d-Moser (KAM) islands, whereas at high
energy (iii) there is a set of invariant spanning curves. Many
observable, e.g., Lyapunov exponents, average velocity,
roughness, etc., may be studied and characterized in the cha-
otic sea at low energy. For example, scaling arguments [5]
can be used to describe the behavior of both average velocity
and the corresponding deviation around it—the roughness
(see also Ref. [6] for recent results in the simplified FUM). A
different version that considers the presence of external
fields, sometimes known as the bouncer [7], consists of a
classical particle in the presence of a constant gravitational
field, bouncing elastically against a rigid but periodically
moving wall. Remarkably, for appropriate control parameters
and initial conditions and in contradistinction to the FUM, it
is possible to observe unlimited growth in the average veloc-
ity and energy of the particle. This apparent discrepancy was
later explained by Lichtenberg, Lieberman, and Cohen [8]
who showed that, although the models are very similar, there
are intrinsic differences leading to different asymptotic be-
havior. Recently, a hybrid version of these two models has
been proposed [9]. Tt consists of a classical particle confined
to bounce elastically between two rigid walls, one fixed and
the other moving periodically; in addition, there is a constant
external field. For certain ranges of control parameters and
appropriate initial conditions, the system possesses proper-
ties that are individually present in the FUM and bouncer
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models, but which coexist together in the hybrid version of
the model.

There are also many other variants of the basic Fermi
model considering, for example, the consequences of dissi-
pation and even quantum effects [ 10—14]. Dissipation can be
introduced, e.g., via consideration of inelastic collisions
[15-21], a chaotic attractor may be present, regions of lock-
ing in the phase space may be observed, crisis events may be
characterized [22], and the effect of a drag force [23,24]
where transients and attracting fixed points are present can
be investigated. The importance of studying these systems is
that they allow direct comparison of theoretical results with
experimental data [25-27]. In addition, the formalism and
methods used in the description of these models are directly
extendable to billiards problems [28].

In this paper, we revisit the FUM in order to study the
case where the particle is immersed in a fluid and therefore
suffers the action of a frictional (drag) force. We will con-
sider the simplified version of the complete FUM (the
SFUM): we thus assume that both walls are fixed but that,
after the particle collides with one of them, it suffers a
change of momentum as if the wall were moving. Following
its introduction by Lieberman and Lichtenberg [3], this sim-
plification of moving boundaries in mappings has been
widely applied [4,5,16,18,20,21,29]. We have ourselves used
a simplified version of the hybrid Fermi-Ulam-bouncer
model [9] in order to obtain analytically the existence con-
dition for invariant spanning curves in both the low and high
energy domains.

The organization of the paper is as follows. In Sec. II we
present the model and discuss all the details needed for the
construction of the nonlinear mapping. Our numerical results
are also presented and discussed in this section. Final re-
marks are made, and conclusions drawn, in Sec. III.

II. THE MODEL AND NUMERICAL RESULTS

The model in question thus consists of a confined classi-
cal particle of mass m bouncing between two rigid walls in
the presence of a drag force whose magnitude is assumed to
be proportional to the particle’s velocity, F,=—n'v, where 7’
is the viscosity. It is assumed that gravity and other external
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fields are absent. One wall is fixed at x=/ and the other one
is located at the origin x=0. The collisions with both walls
are assumed to be elastic but we assume that, after hitting the
wall at x=0, the particle changes momentum as if the wall
were moving according to the equation x,,=& cos(wt). The
dynamics is described by using a two-dimensional nonlinear
mapping T(v,,t,)=©,41,t,41) for the velocity and corre-
sponding time variables. Supposing that the initial conditions
are v=v,, t=t, with the particle’s initial position at x=0, and
after solving Newton’s second law —#n'v=mdv/dt, we find
that the velocity of the particle is given by v,(1)=v,e”". Its
corresponding position is x,(1)=v,/7[1-exp(-n1)]. The
variable 7 is defined as = #%’/m. Note that, in the equations
for v,(1) and x,(1), we have redefined the origin of time as
t—t—t,. In obtaining the map, it is convenient to work in
terms of dimensionless variables and so we define V,
=v,/(wl), =7/ w, e=¢/l and ¢,=wt. The mapping that de-
scribes the dynamics of the model can then be written as

V1=V, —28-2€sin(¢,,,)|

T 1 26 . (1)
¢,,+1:<;/>n—31n 1—7 mod 27

n

The second term in the second equation of (1) denotes the
dimensionless time that elapses between two collisions.

Let us briefly discuss the modulus function used in Eq.
(1). Noting that both walls are fixed, we can immediately see
that successive collisions that are allowed in the FUM cannot
occur in the SFUM. In the complete model, depending on the
velocity and phase, it is possible for the particle, after suffer-
ing one collision with the moving wall, to suffer a second
(i.e., “successive”) collision before exiting the collision area,
and it can also have a negative velocity following the first
collision. In the simplified model, after a collision with the
wall located at x=0 nonpositive velocities are forbidden be-
cause they are equivalent to the particle traveling beyond the
wall. In order to avoid such problems, if after a collision the
particle has a negative velocity, we inject it back with the
same modulus of velocity. Such a procedure is effected per-
fectly by use of the modulus function. Note that the velocity
of the particle is reversed by the module function only if,
after the collision, the particle continues traveling in the
negative direction. The modulus function has no effect on the
motion of the particle if it moves in the positive direction
after the collision. We stress that this approximation is valid
only for small values of e.

The phase ¢, is defined as a real number only when
V,>26. If however V, <20, we thus conclude that the par-
ticle does not have enough energy for a further collision and
therefore comes to rest. The Jacobian of the mapping (1) is
written as

(9¢n+1 (?d)'ﬁl
o, IV,
s=| 72 , @)
aVn+1 ﬁVrHl
ao, av,

with coefficients given by
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a¢n+l =1 ﬂ¢n+l —_ 2
ap, IV, Vi-_26V,’
ﬁVn+] .
— = sgn[V, -25-2
ad)n Sgn[ n € Sll’l(¢”+1)]
&¢n+] :|
X -2 s
{ €cos(yy1) o,
&Vn+1 .
— = V,—26-2
S = senlV, ~25-2esin(g.)]
0"¢n+l
X[{1-2 —_— |,
{ €cos(yi1) v }

where the function sgn(u)=1 if ¥>0 and sgn(u)=-1 if u
<0.

Careful investigation of the determinant of the Jacobian
matrix shows that the mapping (1) yields det J=sgn[V,—26
—2esin(¢,,,)]. This result tells us that it is in principle pos-
sible for there to be regions of phase space where area pres-
ervation is satisfied. We will show, however, that this result is
not applicable throughout the whole of phase space. We be-
gin investigating the behavior in the high energy regime. The
first equation of (1) may be rewritten as

V] = VO - 2€ Sin(¢l) - 25,
Vo=V, = 2¢[sin(¢y) +sin(,)] - 46,

Vy=V,—2€[sin(¢;) + sin(¢,) + sin(p3)] - 66,

and then the general expression as

V,=Vy—2€>, sin ¢;—2nd. (3)

i=1

The analysis of Eq. (3) allows us to conclude that the veloc-
ity of the particle decreases linearly as the iteration number n
increases. However, even supposing that ¢ were uniformly
distributed in the interval ¢ e[0,27) so that on average
2ex", sin ¢;=0, we would still expect the velocity to oscil-
late according to the sin(¢,) function (an effect seen only for
a small interval of n) with increasing n as time evolves. This
is indeed the case, as shown in Fig. 1(a) which plots the
calculated velocity as a function of n for e=1X 1073, =1
X 1075, with the initial condition Vy=1 and ¢,=0. Figure
1(a) shows that the linear decrease in velocity persists over a
large range of n. The inset of Fig. 1(a) shows in detail the
behavior of the velocity V as function of n when the particle
passes near a KAM island. Figure 1(b) shows what happens
in the phase plane V X ¢. For visual clarity, we have only
plotted every fourth point. Thus, for each pair of successive
points connected by the dotted line (as a guide to the eye)
there are another three that were not plotted. Note that the
gap shown in the inset of Fig. 1(a) has the same amplitude
AV as that in Fig. 1(b). Proceeding with a linear fit in the
regime of high V, as shown in Fig. 1(a), we find that the
angular coefficient is given by —1.9990(7) X 107, as pre-
dicted by Eq. (3).
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FIG. 1. (Color online) (a) The velocity V(n) for e=1x1073, §
=1X 107 for Vy=1 and ¢,=0. The inset shows in more detail how
V varies with n near to the KAM island of order i=1. (b) Details of
a trajectory passing near to a KAM island, plotting V(n) as a func-
tion of the phase ¢.

Let us now discuss the behavior of the velocity in the
region of the KAM islands. The stable regions for the sim-
plified version of our model are shown in Fig. 2. There is a
set of KAM curves, each surrounding an elliptic fixed point
that is represented as a dot in Fig. 2. The parameters used in
Fig. 2 were €=1X 107 and 8=1X107>. For this combina-
tion of control parameters, the period-one elliptic fixed

points given by V=268/[l-exp(-278i)] and o=
o3
0.2f b
>
=2
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FIG. 2. (Color online) Stable regions in the velocity V vs phase
¢ phase space for the dissipative SFUM. The parameters used were
€=1x1073 and §=1X 107>. The period-one stable fixed points are
represented by the dots and classified by the label i (i
=1,2,3...10), as shown.
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FIG. 3. (Color online) (a) Behavior of the iteration number 7, as
a function of the ensemble of initial conditions for the low energy
region using 6=2 X 1077 in the simplified version of the dissipative
model. (b) The iteration number for the relaxation transient as a
function of the parameter 8. The error bars represent the standard
deviation for the ensemble of initial conditions used.

+arcsin(d/ €) are stable for i=1,2,3,...<10 and 6/e<1.
Moreover, outside these KAM curves, the particle behaves
quite differently. We have shown that, in the regime of high
energy, the velocity of the particle decreases linearly as the
iteration number increases. It passes around the stable KAM
islands [see Fig. 1(b)] and then wanders chaotically (in a
chaotic transient) in the low energy domain for a number of
iterations that depends on the strength of the drag coefficient.
Along the chaotic transient, the particle might momentarily
acquire small velocity increases. Once V, <24, however, the
particle will have insufficient energy to reach the active wall
for its next kick, and it therefore comes to rest.

We now characterize this transient for the dissipative
SFUM in the low energy domain. To do so, we will evaluate
the time evolution n for an ensemble of m different initial
conditions in the regime of low energy. We will take as initial
conditions different points uniformly distributed in the cha-
otic sea for the nondissipative case, and then study their
asymptotic evolution in the dissipative version. However, as
the drag force can cause some modifications to the form of
the phase space, it is possible for some regions of the chaotic
sea in the nondissipative case to yield periodic or quasiperi-
odic behavior in the dissipative version. If we find we have
taken an initial condition leading to periodic or quasi-
periodic behavior in the dissipative model, it is disregarded
and a different initial condition is then considered. In order
to characterize the deviations around the average value, Fig.
3(a) shows the behavior of the average transient iteration
number n,, i.e., the number of iterations needed to bring the
particle to rest, as a function of the number of initial condi-
tions. Figure 3(b) illustrates the behavior of the average tran-
sient 71, as a function of the strength of the drag coefficient.
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The error bars represent the standard deviation of the tran-
sient averaged over a set of m=10" different initial condi-
tions [horizontal axis of Fig. 3(a)]. These results allow us to
describe the transient as

i, = O, (4)

where a power law fit gives us the exponent w=-0.973(5)
~—1. It is interesting to observe that Eq. (4) diverges in the
limit 6— 0. We can still conclude that in this limit of & and
as a consequence of the divergence of 7, the dynamics for
such a region becomes chaotic. It is also interesting to em-
phasize that all the invariant spanning curves are now stable
in the limit 6—0; a result that, in a sense, establishes the
limits on the extent of the chaotic sea.

We now consider why the area-preserving property is not
applicable over the whole phase space of the dissipative
SFUM. We have shown that, for high energy, the velocity of
the particle decreases linearly as the iteration number
evolves, necessarily bringing the particle to the region where
the chaotic transient arises. As already discussed, however,
the particle may assume very low velocities within this re-
gime. The equations defining the map [see Eq. (1)] are re-
stricted (being defined for real numbers) to the range V,
>26. If the particle acquires a velocity V, <246, the phase
¢,.1 1s not defined as a real number, corresponding to it no
longer having sufficient energy for another collision. As an
immediate consequence, the dynamics of the system is over.
We note that the condition V,, =<2 breaks down the property
of area preservation, because the map is then undefined in
this limit of V,,. Within the stable KAM islands that surround
the elliptic fixed points (see Fig. 2), the particle’s velocity
never falls to V,<246. Once within a KAM island, for which
the phase ¢ is real for all the corresponding velocities, then
dissipation is exactly balanced by the energy gained from the
periodic forcing, and area preservation applies.

Let us now address this apparent paradox. The interested
reader will be able to find a specific example and a more
complete discussion in Ref. [30]. First we emphasize that the
definition of a dissipative system is not quite so clear as it
seems at first sight. One might say that “dissipative” implies
that the phase space volume is not conserved under time
evolution. Alternatively, one might say that dissipative de-
notes that friction is present. In our model, however, we
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have, by construction, a friction force present but, counterin-
tuitively, the determinant of the Jacobian matrix is unity.
Why does this result not contradict the statement that there
are no attractors in the model studied? The answer is related
to the Poincaré recurrence theorem. This theorem, which is
also a consequence of the Liouville’s theorem, states that for
a bounded phase space, almost all trajectories eventually re-
turn arbitrarily close to where they started. It is interesting to
note that this result is true regardless of whether the trajec-
tory under consideration is regular or chaotic. Our results for
high energy show convincingly that the particle velocity de-
creases linearly as the iteration number increases. Eventually
the particle enters the corresponding region of the chaotic sea
(for the nondissipative case) and we observe that V—0.
Thus, it is easy to conclude that the time for the next colli-
sion t—, so that the phase space is unbounded. We also
comment that in the present dissipative version there is no
mechanism for accelerating the particle to high energy (say
higher than V.=21€/0.97..., see Ref. [4]). Thus the
Poincaré recurrence argument is not satisfied.

Finally, we point out that the coexistence of conservative
and dissipative behavior has also been observed in a laser
[31], where it was attributed to the occurrence of a
symmetry-breaking bifurcation, leading to the appearance of
a structurally stable homoclinic cycle.

III. CONCLUSIONS

Although one might have expected dissipation to destroy
all the mixed phase space structure present in the nondissi-
pative Fermi-Ulam accelerator model, we have found that
this is not the case. Dissipation does indeed destroy the in-
variant spanning curves and chaotic sea characterizing the
nondissipative model. Yet its KAM islands can survive the
perturbation. Counterintuitively, therefore, regions of phase
space exist where the dissipative SFUM exhibits the property
of area-preservation.
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